SIEMENS

Angle valves VEN1...

Radiator Valves

DIN-norm, for 2-pipe heating systems

VDN1... VEN1...

- · Valve bodies made of brass, mat nickel-plated
- DN 10, DN 15 and DN 20
- Integrated presetting of the k_v-values
- Internally and externally threaded (Rp/R) conforming to ISO 7-1
- . Manual knob / protective cover included in the delivery
- Can be combined with RTN... thermostatic actuators, SSA... motoric actuators or STA... and STS61... thermal actuators

Use

The radiator valves are used in hot water heating plants for individual room or zone temperature control and limitation. They are basically recommended in all rooms, especially where heat gains or different temperature levels occur.

Type summary

Type reference straight	Typ reference angle	DN	k _v -value [m³/h) setting range	k _v -value [m ³ /h) at a P-band of 2 K
VDN110	VEN110	10	0.090.63	0.43
VDN115	VEN115	15	0.100.89	0.52
VDN120	VEN120	20	0.311.41	0.71

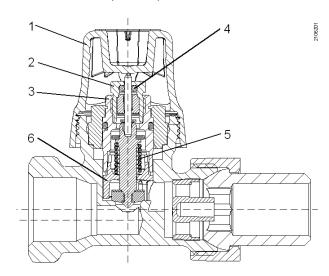
Order When ordering, please give quantity, product name and type reference.

Example: 2 straight valves VDN120

1 protection against dismantling ATN2

Delivery Valves and accessories are packed separately.

Equipment combinations


Product	Types	Data sheet		
Thermostatic actuators	RTN	N2111		
Motoric actuators	SSA31 / SSA61 / SSA81	N4893		
Thermal actuators	STA21 / STA71	N4877		
Thermal actuators	STA72E	N4875		
Thermal actuators	STS61 1)	N4880		

Quasi-proportional control action, not recommended for parallel operation

Function / mechanical design

The flow rate can be preadjusted with an orifice. Full stroke is ensured irrespective of the preadjustment, which is made with the help of the protective cover.

- 1 Manual knob / protective cover
- 2 Sealing gland
- 3 Valve insert
- 4 O-ring
- 5 Reset spring
- 6 Orifice

Features and benefits

- The valves conform to EN 215
- The sealing gland can be replaced while the plant is under pressure (no tools required)

دقيق صنعت پيشرو

Accessories

AVN1Sealing gland

ATN2
Protection against dismantling

ATN3 Manual knob (RAL9016)

ATN4 Manual knob

AVN...

Compression fittings

Engineering notes

The reference numbers for preadjustment are given in the table with the k_v -values (see page 4) and in the valve sizing charts (see pages 5 – 6).

1. Calculate the volumetric water flow \dot{V}_{100}

$$\dot{V}_{100} = \frac{Q_{100}}{1.163 \times \Delta T \times f_1} [m^3/h]$$

 Q_{100} = heat demand [kW] ΔT = temperature differential [K]

1.163 = constant of water

 f_1 = correction factor = 1 for water

- 2. Define the pressure drop Δp_{v100} across the fully open valve In most types of plant, a differential pressure Δp_{v100} of 0.05 to 0.2 bar is adequate.
- 3. Calculation of the nominal flow value k_v

$$k_{v} = \frac{\dot{V}_{100}}{\sqrt{\Delta p_{v100}}} \text{ [m}^{3}/\text{h]}$$

 Δp_{v100} = differential pressure across the valve [bar]

Example:

Heat demand	Q ₁₀₀	= 1.2 kW	
Temperature differential	ΔΤ	= 20 K	
Water volume	$\dot{V}_{100} = \frac{1.2}{1.163 \times 20}$	$= 0.052 \text{ m}^3/\text{h}$	
	1.163 × 20	= 52 l/h	
Required differential pressure across the valve	Δp _{v100}	= 0.1 bar	
Flow	$k_{v}=\frac{0.052}{\sqrt{0.1}}$	= 0.17 m ³ /h	

Solution

According to the chart (refer to \ll Valve sizing charts», or table with k_v -values), the preadjustment required by a VDN110 3/8" valve is 2.

Tips

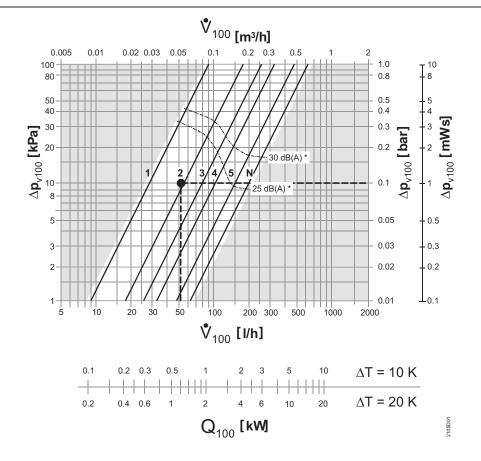
- Noiseless operation is ensured by a pump that provides no more pressure than is needed to transport the required amount of water.
- To keep the valve free from dirt particles, it is recommended to install a strainer.

k_v-values

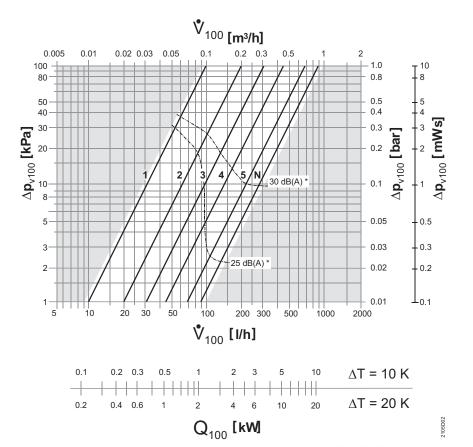
The k_v value gives the volumetric water flow \dot{V}_{100} in m^3/h at a pressure drop Δp_{v100} across the valve of 1 bar.

k_v-values [m³/h] at the different preadjusted positions

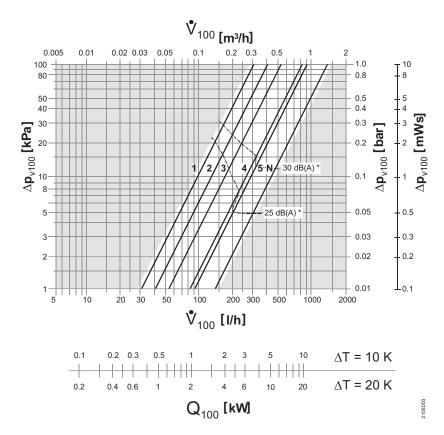
Control range with SSA, STA actuators and STS 61	√	✓	√	√	√	√	
Control range of thermostatic actuators RTN	√	✓	√	√	√		✓
Reference numbers for preadjustment	1	2	3	4	5	N	N 1)
VDN110 / VEN110	0.09	0.18	0.26	0.33	0.48	0.63	0.43
VDN115 / VEN115	0.10	0.20	0.31	0.45	0.69	0.89	0.52


 $^{^{1)}}$ k_{V} -value at a P-band of 2 K

Setting the k_v-values


The k_v -values can be set on the valve's head in 5 steps + N (fully open) using the protective cover, which can be turned through 180°.

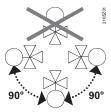
 VDN110 VEN110


VDN115 VEN115

دقيق صنعت پيشرو

Building Technologies

VDN120 VEN120


*) Measuring conditions of the noise curves on request.

Notes

Mounting

- Mounting Instructions are printed on the package
- The valves are supplied preadjusted to N (fully open)
- To ensure correct functioning of the thermostatic heads and electronic actuators, observe the available mounting choices and mounting conditions

Orientation

Maintenance

The valves are maintenance-free.

Repair

In the event of leakage, the valve's sealing gland can be replaced. The valves cannot be repaired; the complete unit must be replaced.

Disposal

The valve must not be disposed of together with domestic waste.

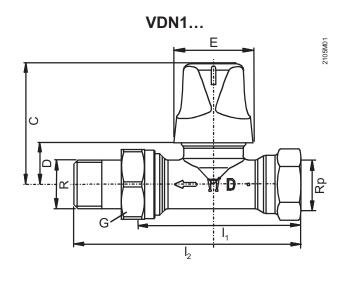
Legislation may demand special handling of certain components, or it may be sensible from an ecological point of view.

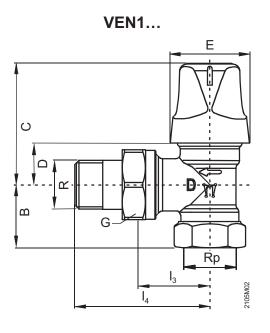
Current local legislation must be observed.

Warranty

Application-related technical data are only warranted when used in connection with the Siemens controllers and actuators listed under «Equipment combinations».

When using the valves with actuators of other manufacture proper


دقيق صنعت پيشرو


Building Technologies

Functional data	PN class	PN 10					
	Suitable media 1)	cold and low-temperature hot water, water with propylene-glycol, water with ethylene-glycol < 30%; recommendation: water treatment to VDI 2035 1120 °C 1000 kPa (10 bar) max. 60 kPa (0.6 bar)					
	Medium temperature						
	Perm. operating pressure						
	Differential pressure Δp_{max}						
	Differential pressure Δp _{v100}	520 kPa (0.050.2 bar): recommended range					
	Stroke	min 1.2 mm					
Materials	Valve body	brass, mat nickel-plated					
	Fitting	brass, mat nickel-plated					
	Protective cover	polypropylene					
	O-ring	EPDM, NBR					
Dimensions / weight	refer to «Dimensions»						
	Mounting length	EN 215					
	Thread	Rp internally threaded to ISO 7-1					
		R externally threaded to ISO 7-1					
		G-thread to ISO 228-1					

¹⁾ Prefer propylene-glycol for environment protection reasons.

Dimensions

		Dimensions [mm]							Thread [inch]			Weight	
Туре	DN	I ₁	l ₂	I_3	I ₄	В	С	D	Е	Rp	R	G	[kg]
VDN110	10	59	85				53	18	35	3/8	3/8B	5/8	0.240
VDN115	15	66	95				53	18	35	1/2	1/2B	3/4	0.285
VDN120	20	74	107				53	18	35	3/4	3/4B	1	0.410
VEN110	10			26	52	22	53	18	35	3/8	3/8B	5/8	0.225
VEN115	15			29	58	26	53	18	35	1/2	1/2B	3/4	0.270

دفيق صنعت پيشرو

Building Technologies